最近项目在使用MongoDB作为图片和文档的存储数据库,为啥不直接存MySQL里,还要搭个MongoDB集群,麻不麻烦?
让我们一起,一探究竟,继续学习解决MongoDB超大块数据问题,实现快速入门,丰富个人简历,提高面试level,给自己增加一点谈资,秒变面试小达人,BAT不是梦。
可以在任何时间添加mongos进程,只要确保,它们的 --configdb
选项指定了正确的配置服务器副本集,并且客户端可以立即与其建立连接。
要修改一个分片的成员,需要直接连接到该分片的主节点,并重新配置副本集。集群配置会检测到变更并自动更新 config.shards
。
一般情况下,不应该从集群中删除分片,会给系统带来不必要的压力。
删除分片时,要确保均衡器的打开状态。
均衡器的作用是把要删除分片上的所有数据移动到其它分片,这个过程称为排空。可以通过 removeShard
命令执行排空操作。
可以通过 sh.setBalancerState(false)
关闭均衡器。关闭均衡器不会将正在进行的过程停止,也就是说迁移过程不会立即停止。
通过db.locks.find({"_id","balancer"})["state"]
查看均衡器是否关闭。0表示均衡器已关闭。
均衡过程会增加系统的负载,目标分片必须查询源分片的所有文档,并将文档插入目标分片的块中,然后源分片必须删除这些文档。
数据迁移是很消耗性能的,此时可以在config.settings
集合中为均衡过程指定一个时间窗口。将其指定在一个闲暇时间执行。
如果设置了均衡窗口,应该对其进行监控,确保mongos能够在所分配的时间内保持集群的均衡。
均衡器使用块的数量而不是数据的大小作为度量。移动一个块被称为迁移,这是MongoDB平衡数据的方式。可能会存在一个大块的分片称为许多小分片迁移的目标。
一个块可以存放数百万个文档,块越大,迁移到另一个分片所花费的时间就越长,默认情况下,块的大小为64MB。
但对于64MB的块,迁移时间太长了,为了加快迁移速度,可以减少块的大小。
比如将块的大小改为32MB。
db.settings.save({"_id","chunksize","value":32})
已经存在的块不会发生改变,自动拆分仅会在插入或更新时发生,拆分操作是无法恢复的,如果增加了块的大小,那么已经存在的块只会通过插入或更新来增长,直到它们达到新的大小。块大小的取值范围在1MB到1024MB。
这是一个集群范围的设置,会影响所有的集合和数据库。因此,如果一个集合需要较小的块,另一个集合需要较大的块,那么可能需要在这两个大小间取一个折中的值。
如果MongoDB的迁移过于频繁或者使用的文档太大,则可能需要增加块的大小。
一个块的所有数据都位于某个特定的分片上。如果最终这个分片拥有的块比其它分片多,那么MongoDB会将一些块移动到其它分片上。
当一个块大于 config.settings
中所设置的最大块大小时,均衡器就不允许移动这个块了。这些不可拆分、不可移动的块被称为超大块。
要解决超大块引起的集群不均衡问题,就必须将超大块均匀地分配到各个分片中。
sh.setBalancerState(false)
;db.settings.save({"_id","chunksize","value":maxInteger})
;moveChunk
命令移动分片中的超大块;splitChunk
命令,直到其块数量与目标分片块数量大致相同;更改片键,使其拥有更细粒度的分片。
通过db.currentOp()
查看当前操作,``db.currentOp()```最常见的用途是查找慢操作。
MongoDB Enterprise > db.currentOp() { "inprog" : [ { "type" : "op", "host" : "LAPTOP-P6QEH9UD:27017", "desc" : "conn1", "connectionId" : 1, "client" : "127.0.0.1:50481", "appName" : "MongoDB Shell", "clientMetadata" : { "application" : { "name" : "MongoDB Shell" }, "driver" : { "name" : "MongoDB Internal Client", "version" : "5.0.14" }, "os" : { "type" : "Windows", "name" : "Microsoft Windows 10", "architecture" : "x86_64", "version" : "10.0 (build 19044)" } }, "active" : true, "currentOpTime" : "2023-02-07T23:12:23.086+08:00", "threaded" : true, "opid" : 422, "lsid" : { "id" : UUID("f83e33d1-9966-44a4-87de-817de0d804a3"), "uid" : BinData(0,"47DEQpj8HBSa+/TImW+5JCeuQeRkm5NMpJWZG3hSuFU=") }, "secs_running" : NumberLong(0), "microsecs_running" : NumberLong(182), "op" : "command", "ns" : "admin.$cmd.aggregate", "command" : { "aggregate" : 1, "pipeline" : [ { "$currentOp" : { "allUsers" : true, "idleConnections" : false, "truncateOps" : false } }, { "$match" : { } } ], "cursor" : { }, "lsid" : { "id" : UUID("f83e33d1-9966-44a4-87de-817de0d804a3") }, "$readPreference" : { "mode" : "primaryPreferred" }, "$db" : "admin" }, "numYields" : 0, "locks" : { }, "waitingForLock" : false, "lockStats" : { }, "waitingForFlowControl" : false, "flowControlStats" : { } }, { "type" : "op", "host" : "LAPTOP-P6QEH9UD:27017", "desc" : "Checkpointer", "active" : true, "currentOpTime" : "2023-02-07T23:12:23.086+08:00", "opid" : 3, "op" : "none", "ns" : "", "command" : { }, "numYields" : 0, "locks" : { }, "waitingForLock" : false, "lockStats" : { }, "waitingForFlowControl" : false, "flowControlStats" : { } }, { "type" : "op", "host" : "LAPTOP-P6QEH9UD:27017", "desc" : "JournalFlusher", "active" : true, "currentOpTime" : "2023-02-07T23:12:23.086+08:00", "opid" : 419, "op" : "none", "ns" : "", "command" : { }, "numYields" : 0, "locks" : { }, "waitingForLock" : false, "lockStats" : { }, "waitingForFlowControl" : false, "flowControlStats" : { } } ], "ok" : 1 }
waitingForLock
状态,则当前操作不会让出锁;通过``db.currentOp()找到慢查询后,可以通过db.killOp(opid)```的方式将其终止。
并不是所有操作都可以被终止,只有当操作让出时,才能终止,因此,更新、查找、删除操作都可以被终止,但持有或等待锁的操作不能被终止。
如果MongoDB中的请求发生了堆积,那么这些写操作将堆积在操作系统的套接字缓冲区,当终止MongoDB正在运行的写操作时,MongoDB依旧会处理缓冲区的写操作。可以通过开启写入确认机制,保证每次写操作都要等前一个写操作完成后才能执行,而不是仅仅等到前一个写操作处于数据库服务器的缓冲区就开始下一次写入。
系统分析器可以提供大量关于耗时过长操作的信息,但系统分析器会严重的降低MongoDB的效率,因为每次写操作都会将其记录在system.profile
中记录一下。每次读操作都必须等待system.profile
写入完毕才行。
开启分析器:
MongoDB Enterprise > db.setProfilingLevel(2) { "was" : 0, "slowms" : 100, "sampleRate" : 1, "ok" : 1 }
slowms
决定了在日志中打印慢速操作的阈值。比如slowms
设置为100,那么每个耗时超过100毫秒的操作都会被记录在日志中,即使分析器是关闭的。
查询分析级别:
MongoDB Enterprise > db.getProfilingLevel() 2
重新启动MongoDB数据库会重置分析级别。
通过Object.bsonsize
函数获取其在磁盘中存储大小,单位是字节。
> Object.bsonsize(db.worker.find()) 65194
使用mongotop
统计哪些集合最繁忙。
使用mongotop --locks
统计每个数据库的锁信息。
mongostat
提供了整个服务器范围的信息。
以上就是MongoDB超大块数据问题解决的详细内容,更多关于MongoDB超大块数据的资料请关注其它相关文章!