在我们的生产环境中,有一个模糊检索的文档框,但是当数据量级别上去之后,频繁对数据库造成压力,所以想使用Full Text全文索引进行优化 下面是一个总结的简单案例
假设我们有客户的地址簿,目标是通过他/她的姓名或电子邮件快速找到人。
CREATE TABLE `address_book` ( `id` BIGINT UNSIGNED NOT NULL AUTO_INCREMENT, `name` VARCHAR(128) NOT NULL, `email` VARCHAR(128) NOT NULL, PRIMARY KEY (`id`) ) ENGINE=InnoDB CHARSET=utf8mb4;
我们将用 1_000_000 个随机生成的人填充地址簿。每个人将被插入单独的查询中。姓名将始终采用整齐的形式 - 名字和姓氏。电子邮件会更加混乱——名字/姓氏的顺序和存在不同,分隔符不同,并且有一些随机数。
> SELECT `name`, `email` FROM `addressbook` LIMIT 8; +--------------------+---------------------------------+ | name | email | +--------------------+---------------------------------+ | Reed Slavik | 664-slavik-reed@example.com | | Reilly Isaacson | reilly972isaacson@example.com | | Theodore Klosinski | 942.klosinski@example.com | | Duncan Sinke | 912.duncan@example.com | | Maranda Cabrara | cabrara-809-maranda@example.com | | Hugh Harrop | hugh765@example.com | | Bernard Luetzow | bernard887luetzow@example.com | | Niki Manesis | niki-247@example.com | +--------------------+---------------------------------+
测试将在具有默认配置的库存 MySQL 8.0.32 Docker 映像上执行(除非另有说明)。硬件是 AMD 6800U、32GB RAM、PCIe NVMe 4.0 x4 SSD。操作系统是带有 BTRFS 和 LUKS 磁盘加密的 vanilla Arch Linux。
天下没有免费的午餐。索引加快SELECT
但减慢INSERT
//语句,因为计算的额外 CPU 成本以及额外的磁盘传输和存储空间成本UPDATE
。DELETE
我会尝试写简短的总结何时使用每种方法,有什么好处和缺点。
最简单的方法是没有索引列并使用LIKE '%john%'
语法。
因为没有索引维护这种方法不会增加数据加载时间和存储空间。
$ time cat address_book.sql | mysql real 23m 31.43s
> SELECT data_length, index_length FROM information_schema.tables WHERE table_name = 'address_book'; +-------------+--------------+ | DATA_LENGTH | INDEX_LENGTH | +-------------+--------------+ | 71942144 | 0 | +-------------+--------------+
性能很差。当没有使用索引时,MySQL 使用 Turbo Boyer-Moore 算法 来查找匹配的行。
> SELECT * FROM `address_book` WHERE `name` LIKE '%john%' AND `name` LIKE '%doe%'; +--------+----------------+-------------------------------+ | id | name | email | +--------+----------------+-------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | | 316137 | Johnnie Doepel | johnnie-doepel-72@example.com | +--------+----------------+-------------------------------+ 2 rows in set (0.222 sec)
如查询所示,所有行都需要从磁盘中提取以进行分析EXPLAIN
。
> EXPLAIN SELECT * FROM `address_book` WHERE `name` LIKE '%john%' AND `name` LIKE '%doe%'\G id: 1 select_type: SIMPLE table: address_book partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 996458 filtered: 1.23 Extra: Using where
使用: 当您的应用程序很少进行全文搜索并且您愿意接受低查询性能时。在小数据集上效果很好。简单的实施是巨大的好处。
避免: 当频繁使用全文搜索时——你会在这里消耗大量的数据库性能,尤其是在大数据集上。此外,由于全行扫描,它可能会阻止应用程序中需要FOR UPDATE
锁定此类表的其他查询。
不幸的是,在一个字段上打一个索引并称之为一天是行不通的。在 B 树索引中,文本从搜索短语的开始到结束被转换为一系列二元(真/假)测试树。对于示例数据:
1 John 2 Joseph 3 Joseph 4 Ann
它看起来像这样。
<="a"? / \ yes no / \ <="nn"? <="jo" / / yes yes / / [4] <="h"? / \ yes no / \ <="n"? <="seph"? / / yes yes / / [1] [2,3]
如果你正在寻找Joseph
你测试第一个字符。因为j>a
你经过no
路径。然后你测试前两个字符。因为jo=jo
你从短语中删除它们并通过yes
路径。然后你测试下一个不匹配的字符是h
......你继续执行这些系列的测试,直到你最终到达包含你正在寻找的短语的行列表,在这种情况下是2
和3
。但这表明这种类型的索引必须从短语的开始到结束起作用,这意味着短语不能以通配符开头。
让我们把它添加到我们的表中。
> ALTER TABLE `address_book` ADD KEY (`name`), ADD KEY (`email`);
如您所见,当搜索的短语以通配符索引开头时将不会被使用。
> EXPLAIN SELECT * FROM `address_book` WHERE `name` LIKE '%john%' AND `name` LIKE '%doe%'\G id: 1 select_type: SIMPLE table: address_book partitions: NULL type: ALL possible_keys: NULL key: NULL key_len: NULL ref: NULL rows: 996458 filtered: 1.23 Extra: Using where
如果您知道文本具有某种特定结构(在我们的例子中,名称在前),我们可以利用这些知识并在不使用通配符的情况下询问名称。
> SELECT * FROM `address_book` WHERE `name` LIKE 'john%' AND `name` LIKE '%doe%'; +--------+----------------+-------------------------------+ | id | name | email | +--------+----------------+-------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | | 316137 | Johnnie Doepel | johnnie-doepel-72@example.com | +--------+----------------+-------------------------------+ 2 rows in set (0.003 sec)
Explain 显示这次使用了索引,所有以 开头的名称john
都在索引中找到,并且 Boyer-Moore 必须仅用于针对 对该集合进行精细过滤doe
。
> EXPLAIN SELECT * FROM `address_book` WHERE `name` LIKE 'john%' AND `name` LIKE '%doe%'\G id: 1 select_type: SIMPLE table: address_book partitions: NULL type: range possible_keys: name key: name key_len: 514 ref: NULL rows: 3602 filtered: 100.00 Extra: Using index condition
当涉及到电子邮件时,这种方法很快就会显示出局限性。它太混乱了——可能以名字开头,可能以姓氏开头,甚至可能以完全不同的东西开头。在这种情况下,查询时间就像没有索引的情况一样。
> SELECT * FROM `address_book` WHERE `email` LIKE '%john%' AND `email` LIKE '%doe%'; +--------+----------------+-------------------------------+ | id | name | email | +--------+----------------+-------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | | 316137 | Johnnie Doepel | johnnie-doepel-72@example.com | +--------+----------------+-------------------------------+ 2 rows in set (0.314 sec)
在性能方面,它会稍微减慢数据加载速度并使存储空间增加一倍,但并不是很有用。
$ time cat address_book.sql | mysql real 24m 12.81s
> SELECT data_length, index_length FROM information_schema.tables WHERE table_name = 'address_book'; +-------------+--------------+ | DATA_LENGTH | INDEX_LENGTH | +-------------+--------------+ | 71942144 | 112623616 | +-------------+--------------+
使用: 当您可以将文本拆分为具有自己索引的明确定义的列时。例如重组表以单独first_name
存储last_name
。此外,您必须愿意牺牲起始通配符。
避免: 当文本太不可预测和无序时,例如email
您name
商店中的各种产品。
注意:从右到左的语言也不例外,搜索的词组不能以通配符开头,无论文字的方向是什么。
首先让我们解释一下什么是反向索引。B树索引是对搜索短语从头到尾的一系列测试。反向索引采用不同的方法,它从单词创建标记。Token 可以是整个单词或 n-gram(来自单词的给定长度的子串,对于Johnie
3 个字母的 n-gram 是:joh
, ohn
, hni
, nie
)。
这允许以稍微不同的方式构建索引。对于示例数据:
1 Paul 2 Roland 3 Carol
3 个字母的 n-gram 标记的索引将如下所示:
pau => [p1r1] # that means this n-gram is at position 1 in row 1 aul => [p2r1] rol => [p1r2,p3r3] ola => [p2r2] lan => [p3r2] and => [p4r2] car => [p1r3] aro => [p2r3]
现在,如果我们查找,rol
我们会立即知道此标记存在于 rows2
和中3
。如果我们搜索更长的短语,比如roland
数据库可能会使用这个索引两次——如果rol
在某个位置找到,那么and
必须在 3 个字符之后找到。只有行2
符合此条件。
反向索引有它自己的语法,让我们在我们的表中添加一个。
ALTER TABLE `address_book` ADD FULLTEXT (`name`), ADD FULLTEXT(`email`);
默认分词器使用词边界来查找分词,这意味着一个连续的词就是一个分词。
要利用全文索引MATCH () AGAINST ()
语法必须使用。AGAINST
section 可以在NATURAL LANGUAGE MODE
搜索文本也被标记化的地方工作,或者在BOOLEAN
包含它自己强大的迷你表达式语言的更有用的模式下工作。我不会深入探讨BOOLEAN MODE
语法,基本上是+
指AND
.
> SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+johnie +doemel' IN BOOLEAN MODE); +--------+---------------+------------------------------+ | id | name | email | +--------+---------------+------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | +--------+---------------+------------------------------+ 1 row in set (0.001 sec) > SELECT * FROM `address_book` WHERE MATCH (`email`) AGAINST ('+johnie +doemel' IN BOOLEAN MODE); +--------+---------------+------------------------------+ | id | name | email | +--------+---------------+------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | +--------+---------------+------------------------------+ 1 row in set (0.001 sec)
哇,真快 比没有索引的方法快 200 倍以上。我们并不局限于像在 B 树索引中那样从短语的开头进行搜索,这意味着在电子邮件中搜索也可以快速进行。我们的索引根据 过滤行EXPLAIN
。
> EXPLAIN SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+johnie +doemel' IN BOOLEAN MODE)\G id: 1 select_type: SIMPLE table: address_book partitions: NULL type: fulltext possible_keys: name key: name key_len: 0 ref: const rows: 1 filtered: 100.00 Extra: Using where; Ft_hints: no_ranking
生活是美好的。或者是吗?
> SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+john +doe' IN BOOLEAN MODE); Empty set (0.002 sec)
第一个陷阱!您找不到比标记长度短的短语,默认情况下整个单词都是标记。这是搜索速度和索引构建/存储成本之间的平衡。
$ time cat address_book.sql | mysql real 29m 34.44s # du -bc /var/lib/mysql/default/fts_* 492453888 total
那是 126% 的未索引加载时间,仅全文索引占用的时间是数据本身的 7 倍。请注意,没有简单的方法可以从 中检查全文索引大小INFORMATION_SCHEMA
,它必须在 MySQL 服务器文件系统上完成。
用途: 当您想按整个单词进行搜索时。布尔模式表达式允许执行一些很酷的技巧,例如排除某些单词或按相关性查找,您可能会发现这些技巧很有用。但是您必须愿意接受更高的写入时间和更高的存储成本。
这次每个单词将被拆分成 n-gram。n-gram 的默认长度在服务器配置变量中定义:
> show variables like 'ngram_token_size'; +------------------+-------+ | Variable_name | Value | +------------------+-------+ | ngram_token_size | 2 | +------------------+-------+
索引创建语法必须明确定义分词器(此处命名为“解析器”)。
ALTER TABLE `address_book` ADD FULLTEXT (`name`) WITH PARSER ngram, ADD FULLTEXT(`email`) WITH PARSER ngram;
这次按预期找到了行,即使在搜索中没有使用整个单词。
> SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+john +doe' IN BOOLEAN MODE); +--------+----------------+-------------------------------+ | id | name | email | +--------+----------------+-------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | | 316137 | Johnnie Doepel | johnnie-doepel-72@example.com | +--------+----------------+-------------------------------+ 2 rows in set (0.266 sec)
但是这种可怕的表现呢?这比没有索引要慢!答案在于 n-gram 大小。如果匹配短语与 n-gram 大小不匹配,则数据库必须查询索引几次并合并结果或进行补充的非索引过滤。让我们重新启动我们的服务器并--ngram_token_size=3
重建表。
> SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+john +doe' IN BOOLEAN MODE); +--------+----------------+-------------------------------+ | id | name | email | +--------+----------------+-------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | | 316137 | Johnnie Doepel | johnnie-doepel-72@example.com | +--------+----------------+-------------------------------+ 2 rows in set (0.087 sec)
因此,在这种情况下doe
,匹配的标记大小和索引被直接使用,但john
必须在该索引中间接找到。如果我们要求 ,这一点就更明显了COUNT
。
> SELECT COUNT(*) FROM `address_book` WHERE MATCH (`email`) AGAINST ('+john' IN BOOLEAN MODE); +----------+ | COUNT(*) | +----------+ | 3563 | +----------+ 1 row in set (0.064 sec) # phrase longer than token > SELECT COUNT(*) FROM `address_book` WHERE MATCH (`email`) AGAINST ('+doe' IN BOOLEAN MODE); +----------+ | COUNT(*) | +----------+ | 431 | +----------+ 1 row in set (0.003 sec) # phrase equal to token
所以我们牺牲了使用索引按 2 个字符搜索的能力,在按 3 个字符搜索时获得了很大的提升,在其他情况下获得了平庸的提升。
使用这种方法是一堆权衡。不,您不能在同一字段上使用不同 n-gram 大小的索引来解决各种搜索短语长度。更糟的是——配置变量是全局的,所以你甚至不能FULLTEXT
在具有不同 n-gram 大小的不同表上有两个索引。一个配置必须满足您在服务器范围内的所有需求。
写入性能和存储损失如何?
$ time cat address_book.sql | mysql real 26m 31.05s # du -bc /var/lib/mysql/default/fts_* 362430464 total
不幸的是它们很大,索引占用的空间是数据的 5 倍。
使用: 当你想按部分单词进行搜索时。布尔模式表达式也适用于此。但首先,您必须找到令牌长度在服务器范围内的正确平衡,并接受更高的写入时间和更高的存储成本。长度不同于标记大小的短语仍然比未索引的方法更快,但没有“哇”因素。
避免: 当您的文本使用表意语言(如中文或日文)并且需要单字符标记时。日语有单独的 MeCab 分词器,但这超出了本文的范围。
让我们使用上一章的数据并删除所有行。
> DELETE FROM `address_book`; > SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+john +doe' IN BOOLEAN MODE); Empty set (0.233 sec)
那么对于有数据的表来说时间是 0.087 秒,但现在对于空表来说是 0.233 秒?这是因为当从 InnoDB 表中删除行时,它不会从 FULLTEXT 索引中删除。相反,单独的隐藏表跟踪删除的行,并且在过时的索引中搜索必须将 1_000_000 行的过时结果与已删除的 1_000_000 行的列表进行比较。这变得越来越糟。让我们添加、删除、添加、删除和添加我们的数据。所以我们回到表中的 1_000_000 个原始行。与我们开始时相同的行数。
> SELECT * FROM `address_book` WHERE MATCH (`name`) AGAINST ('+john +doe' IN BOOLEAN MODE); +--------+----------------+-------------------------------+ | id | name | email | +--------+----------------+-------------------------------+ | 222698 | Johnie Doemel | doemel.36.johnie@example.com | | 316137 | Johnnie Doepel | johnnie-doepel-72@example.com | +--------+----------------+-------------------------------+ 2 rows in set (7.038 sec)
这种情况迅速升级……现在是时候进入非常迷幻的土地了。要重建 InnoDBFULLTEXT
索引并恢复性能,您必须更改整个表。这需要大量的数据库用户权限,并且很可能导致应用程序停机。但不要害怕。有全局innodb_optimize_fulltext_only=ON
标志,全局(!)更改ALTER
/ OPTIMIZE
(在 InnoDB 中,它们是同义词)以仅从FULLTEXT
索引中清除旧条目。您可以通过设置标志来配置清除多少令牌innodb_ft_num_word_optimize
,最大值为 10_000。如果你完成了,就没有反馈。我再重复一次——如果你完成了没有反馈,你应该连续运行ALTER
s 希望在某个时候你的FULLTEXT
索引没有过时的条目。
那是垃圾UI设计。
治疗比疾病更糟糕。MyISAMFULLTEXT
即时清除索引,它不会降低数据保留。因此,您可能会将 InnoDB 表转换为 MyISAM,从而丢失所有 InnoDB 好东西。或者您可以构建补充 MyISAM 表,如address_book_fts
,在那里有FULLTEXT
索引并使用触发器从 InnoDB 表同步数据。当您认为自己很厉害时 - GTID 一致性就会发挥作用。如果您在复制中使用 GTID 事务标识符,则无法在同一事务中更新 InnoDB 和 MyISAM 表,这意味着您必须冒在流程中自动提交写入的风险。呸。
我希望通过这篇文章您能更好地了解 MySQL 关于全文搜索的功能。有取舍,也有缺陷。如果您还没有找到符合您需求的解决方案,我建议:
以上就是MySql中的Full Text Search全文索引优化的详细内容,更多关于MySql全文索引优化的资料请关注其它相关文章!